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Two Monte Carlo algorithms for computing quantum mechanical expectation values 
of coordinate operators, i.e., multiplicative operators that do not commute with the 
Hamiltonian, are presented and compared. The first employs a single quantum Monte Carlo 
(QMC) random walk, while the second involves a variational Monte Carlo (VMC) random 
walk with auxiliary QMC “side walks.” The tagging algorithm used for efficiently tracking 
descendants of a walker is described in detail for each approach. For the single-walk 
algorithm it is found that carrying weights together with branching significantly improves 
effmiency. Exploitation of the correlation between VMC and QMC expectation values is 
also considered. Large increases in efiiciency in the second approach are found when such 
correlations are incorporated. It is found that both approaches readily yield accuracies and 
precisions of better than 0.5 % for the model systems treated here, namely, H and H,. The 
second method, involving a VMC walk with auxiliary QMC walks, is the more efficient for 
these systems. c 1991 Academic Press, Inc 

I. INTRODUCTION 

Over the last 10 to 15 years, Monte Carlo techniques have been increasingly 
applied to quantum mechanical problems [ 11. Of these “quantum Monte Carlo” 
(QMC) methods, a subclass called Green’s function Monte Carlo (GFMC) [2] has 
been employed in obtaining stochastic solutions of the Schrodinger equation for 
atomic and molecular systems. The focus of most of these approaches has been the 
accurate computation of the total electronic energy of small atoms and molecules. 
Other energy-related quantities have also been computed [3]. However, since 
energy is only one of many important properties, it is desirable to be able to 
evaluate expectation values of operators other than the Hamiltonian, H. Unfor- 
tunately, for properties whose operators do not commute with H, such as functions 
of coordinates from which static moments of the charge distribution may be 
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obtained, the usual evaluation of quantum Monte Carlo averages (the so-called 
mixed expectation values) is not exact [4]. 

Approaches for modifying the GFMC approach to compute expectation values 
with respect to the square of the wave function, rather than the mixed product of 
this function and a trial wave function, have been proposed and developed by 
Kalos and others [S-7]. We follow Liu et al. [7] in exploring modifications to the 
diffusion QMC approach [8, 93 to obtain exact (“pure”), rather than mixed, 
expectation values [4, 7, 10, 111. 

Within the class of GFMC techniques [9, 12-151 diffusion QMC is pedagogi- 
cally the clearest and is summarized for present purposes. For a full discussion see 
Refs. [S, 91. An important antecedent is the work of Anderson [ 161. The develop- 
ment below can also be generalized to other forms of GFMC. 

Starting with the time-dependent Schriidinger equation in imaginary time 
multiplied by a trial function, Y,. (for importance sampling), one obtains (in 
atomic units) 

af(R, t) --= 
at -;V’j.+(E,(R)-E,)/+;V(&JR)). (1) 

Equation (1) gives the evolution of f(R, t) = YJT(R) @(R, t) in imaginary time, 
where @(R, t) is the state function. The other quantities are the local energy, 
E,(R) = ‘Y,(R)-’ H!P,(R), and the quantum “force” or drift velocity, F,(R) = 
2YT(R))’ VY,(R); R is the 3N-dimensional coordinate vector of the quantum 
particles (electrons in the calculations here) while E,, the reference energy, is 
simply a shift in the zero of energy. Interpreted in the light of the Monte Carlo 
simulations we will describe, the terms on the right-hand side of Eq. (1) correspond 
to diffusion, branching, and drift, respectively. For this interpretation to hold 
requires that f be both real and positive. This is a nontrivial requirement, but it can 
be satisfied [9, 151. By following the evolution off, one notes that after a sufficient 
time t, the excited-state components in the eigenfunction expansion of @(R, t) 
become negligible, leavingf proportional to the ground state. This follows since, in 
imaginary time, the amplitudes of the excited states relative to the ground state 
depend on time as exp[ - t(E, -E,)]. Therefore, the dominant term remaining at 
large t is 

f(R t) = CO expC - W. - EdI yY,(R) cpo(R), (2) 

where &, is the lowest energy eigenfunction of the Hamiltonian not orthogonal to 
YT, and E, is the corresponding eigenvalue. The coefficient co results from the 
expansion of @(R, 0) in the complete set {bi}. The time dependence of f(R, t) is 
largely eliminated by choosing ER to approximate E, as accurately as possible. 
Since f converges exponentially to its asymptotic distribution, Y,b, may generally 
be sampled with great accuracy after modest simulation times. 

The procedure by which f(R, t) is obtained from f(R, 0) involves the Green’s 
function propagator, G(R -+ R’, t) [7-151. This function is a solution of Eq. (1) 
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with the boundary condition G(R -+ R’, 0) = 6(R’ - R) and gives the probability of 
moving from R to R’ in time t. Though an analytic form of G is known for oni4 
the simplest systems, one may nevertheless use Monte Carlo to sample the exact G 
[S-7]. A more straightforward approach, however, is to employ an analytic short- 
time approximation to G [S, 93, namely, G,(R + R’, z), which becomes exact as 
z -+ 0. Thus, convergence to large t is accomplished by many moves with small time 
steps z. Because the asymptotic distribution generally will not correspond exactly to 
Yv,& for non-zero T, it is necessary to use sufficiently small steps to suppress the 
bias below the level of statistical uncertainty. Alternatively, calculations at several 
t values may be performed, followed by an extrapolation to T = 0. Though there is 
additional overhead, its simplicity relative to exact GFMC makes the short-time 
approximation useful. 

Having obtained the asymptotic distribution x one may sample “mixed” 
expectation values of a time-independent operator A by averaging Y 7 ’ A Y’, over 
f = ‘VT&, i.e., 

(3a) 

= s yY,(R) 4oP)C ‘J”,(R)-’ A ‘Y,(R)1 dR = (&,I A I Yv,> 
s ‘Y,(R) #o(R) dR (401 YT> . (3b) 

This is to be distinguished from the exact or “pure” expectation value A, = 
(&,I A I&,). (Here and throughout this paper all wave functions are assumed to be 
normalized.) Since &, is an eigenfunction of H, A, = A, if A is an Hermitian 
operator that commutes with H. This follows since, for A& = a,$,, one has 

(401 A I Y,>l(hl YT> = 00 = (401 A IA,>. (4) 

For operators that do not commute with H, e.g., the dipole and higher moment 
operators, the mixed expectation value is only an approximation to the pure one 
[7]. The mixed average is accurate to first order in quantities which depend on the 
difference function, 6 = do - YyT, i.e., the quantities (i. 1 S) and (&I A IS). Also 
accurate to first order in 6 is the “trial” expectation value, A, = ( YTI A 1 Yv,), 
computed by sampling from ) YTI * in a procedure often referred to as variational 
Monte Carlo (VMC). VMC may be cast in a form algorithmically identical to diffu- 
sion QMC, except that the branching, cf. Eq. (l), is suppressed. The usefulness of 
AT in this context is that it can be combined with A,,, to obtain an estimate of A,, 
accurate to second order in 6, namely [4, lo], 

A,z~A,-A~=A,+~(~~). (5) 

Though this approximation is generally better than either the trial or mixed 
estimators, it may still be poorer than necessary for reliable numerical predictions. 
For this reason it is desirable to compute pure expectation values exactly 
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Nevertheless, early work [4] essentially abandoned pure expectation values 
because of their large statistical noise relative to second-order estimators (5). Thus, 
to obtain the desired accuracy of the pure estimators efficient algorithms are 
required. These are explored in this paper. Other approaches have also been 
recently considered [ 111. 

The remainder of this paper consists of four sections. In Section II, we present the 
theory and an efficient algorithm for sampling the ratio q&,/Y, during the QMC 
walk. In this approach, the computation of pure expectation values requires mini- 
mal change from the QMC approach used for mixed averages. No auxiliary walks 
are required, only a tagging algorithm for keeping track of offspring. In Section III, 
we describe a second algorithm that enables the computation of trial, mixed, and 
pure expectation values in a single calculation. Section IV discusses an approach for 
reducing statistical error in averages of odd functions (of which the dipole moment 
is an example). Finally, Section V presents our results for two model systems. We 
calculate the moments (r), (z’), and (r’) of H and (z*) and (r’) of HZ. The 
efficiency and advantages of each method are discussed. The Appendix treats the 
advantages associated with carrying weights for several generations before branch- 
ing is performed. 

II. PURE EXPECTATION VALUES WITH A SINGLE QMC WALK 

Since the QMC approach described in Section I yields only mixed expectation 
values, the ratio &J!Py, must be sampled in order to obtain pure expectation values. 
One has 

= (doI A 190) = A,, (6) 

where the subscript j-denotes the average over Y,&,. As shown by Liu et al. [7], 
&,/YT may be obtained from the asymptotic number of descendants resulting 
from a QMC walk which starts at R. For completeness, we modify their proof for 
diffusion QMC. 

An initial distribution given by a single point at R, is 

&(R’, 0) = Y,(R’) cD(R’, 0) = 6(R’ -R). (7) 

Expanding the initial state function, @, in the complete set of (normalized) eigen- 
functions of H yields 

6(R’- R) = YT(R’) c c,q5#t’). (8) 
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The expansion coefficients may be obtained by multiplying Eq. (8) by 
cj,(R’)/!P,(R’) and integrating over R’, giving 

ci = d,(R)P’,(R). (9) 

From the asymptotic form off, given by Eq. (2), we note that fk(R’, 0) evolves to 

fR(R’, t) = co expC - t(Eo - ER)I !f’AR’) 4,(R’h (10) 
with co given by Eq. (9). Integrating Eq. (10) over all space “counts” the current 
number of descendants (at time t), or for large t, the asymptotic population P(R) 
of a walker starting at R, i.e., 

Returning to Eq. (6) for the evaluation of A,, we see that $o/Yy, may be replaced 
by P since the overlap integral and time dependence present in P will cancel. 

Tagging Algorithm for Counting Descendants 

In order to count efficiently the descendants of a walker during the QMC walk, 
we have developed the following algorithm, which we have previously described 
briefly in Ref. [lo]. A similar approach has been advocated recently by Runge and 
Runge [17]. For an arbitrary walker at time 0, its descendants at time t later (or, 
equivalently, N steps later where Nr = t) are counted to obtain P cc do/Y’,. This 
process may be repeated for different points sampled from !Pr.4o. However, this 
would yield an additional start-up cost by propagating each initial point a distance 
of N time steps to reach the asymptotic domain of P. Instead, our algorithm uses 
each step of a single (branching) walk; that is, by propagating for additional time 
steps to a time t + t, the “N-distant” offspring of the first generation (at time z) may 
be computed. Likewise, at time t + 22, N-distant offspring populations may be 
determined for walkers which may be thought of as beginning at time 2t. Therefore, 
after an initial investment of N steps, additional N-distant values of do/Yy, may 
be sampled for each subsequent step in the walk. Furthermore, since N itself 
is arbitrary, convergence of the asymptotic population as a function of N may also 
be determined. 

The branching of the QMC walk, however, requires tagging walkers. When the 
branching yields several walkers, say at a time mz, one must know which of those 
at (m + N)r are descended from which of those at mz. To store this information a 
“family tree” is created as the walk progresses, and each walker is labelled so that 
its location in the tree is specified. This labelling is accomplished with two tags 
[lo]. The first, 0 (0 6 8 < O), gives (together with t) a walker’s location in the tree, 
while the second, 6, specifies that area (range) within the tree in which descendants 
of this walker will be placed. The tagging begins by setting 8(k = 1, t = 0) = 0, where 
the index k labels the walker, and 6(k = 1) = 0. If a walker “dies,” i.e., has no 
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offspring, then no subsequent values of 8 and 6 are derived from it. When the kth 
walker has nk ( > 0) immediate offspring, the values of 0 and 6 assigned to these 
daughters are obtained from B(k, t) and 6(k) according to 

B(hf+f, t+r)=B(k, t)+ 26(k) (12a) 

and 
6(M+ 1) = 6(k)/n,, (12b) 

where 1 ranges from 1 to nk. The tags are properly sequenced if M = I::,’ ni, where 
M is the partial sum (up to walker (k - 1)) of the number of walkers in the new 
generation. The example in Fig. 1 follows a few generations out from a single 
walker at the origin. The shadings indicate the range in which each walker’s off- 
spring are placed. Using the algorithm described, the descendants of a walker with 
6’= 8(k, t) and 6 =6(k) lie in the range, S, given by 

s= pqk, t), e(k, f) + 6(k)). (134 

From Eqs. (12), 8(k, t) +6(k) < d(k + 1, t). (The equality holds when no walkers 
die.) Since the descendants of the next walker, (k + l), possess values of 0 >/ 
B(k + 1, t), the 8 values of the walkers descended from walker k also lie within 

S’ = [d(k, t), 8(k + 1, I)). (13b) 

FIG. 1. Tagging algorithm for single QMC walk method. A “family tree” for a single walker starting 
at the origin is shown. Each ring outward corresponds to one generation (or an increase in time by 7). 

Location in the diagram identities a walker with its 0(k, 1) label. All descendants of a walker will be in 
the range of angles from 0 to (3 + 6, making identification of progeny possible for all future generations. 
This enables one to determine convergence to asymptotic populations in a single calculation. Shadings 
show the angular descendant space for each walker. An ensemble of trees may be readily treated as 
described in the text. 
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With this choice, only 6’ values need to be stored to compute the range in which 
the descendants of a given walker are located. This choice is illustrated in Fig. I. 

To verify that the range in Eq. (13a) follows from Eqs. (12) we consider the 
values of 6 possessed by the descendants, at time t + Ns, of a walker with 0 = O(k, t) 
and 6 = 6(k). Repeated use of Eqs. (12) readily shows that a particular descendant, 
m, will be located at 

Q(m, t + NT) = 8(k, t) + 

+ 
I,- 1 WI - 

nL n,n,..~n,-, 
(14) 

The labels li, (1 < lj <n,}, correspond to the ancestral lineage of m, while ni ( > 0) 
give the number of daughters in each family leading to m. That is, there are n, 

daughters of walker k; daughter I,, who has n2 daughters, is the direct ancestor of 
m in this generation and so on. The minimum value of O(m, t + NT), corresponding 
to the initial walker never dying, is obtained by setting {lj} = 1, which yields 
Omln(m, t + NT) = B(k, t). The maximum 8, corresponding to the walker with the 
largest value of 8 at each time step never dying, results from setting each li to its 
maximum value (n,) yielding 

emax(m, t + NT) = O(k, t) + y&k)+- *,-I .W) I .,, +nL-1 6, 
n2 nl nL n,n,...n, , 

= 8(k, t) + 6(k) l- 
1 

n,n2...nL 
(15) 

Therefore, the range of walker k is indeed given by Eq. (13a). Since this range is 
contained within [O(k, t), B(k + 1, t)), the “descendant spaces” of walkers never 
overlap. 

With the assignment of labels to walkers as described above, asymptotic popula- 
tions are readily sampled. At an arbitrary time, t,, the number of descendants of 
point k at a later time t, + t is given by 

P(R/c, t)=Czi, z,= 1, if O(k, t)<B(i, t,+t)<B(k+ 1, t), 
I 

Ii = 0, otherwise. (16) 

As mentioned earlier, only one tree is necessary. However, to take advantage of 
the vector capabilities of current machines, a group of family trees may be created 
and asymptotic populations of several independent points obtained. This is easily 
accomplished for M, initial points by setting 

e,(l,o)=(i-l)@, 1 <idM,. (17) 
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For each initial point 6 = 0, new values of 8 and 6 are computed according to 
Eqs. (12). Again, the descendant spaces are given by either (13a) or (13b), though 
with integer multiples of 0 added to each bound. 

Finally, it should be noted that with this algorithm there is the need for some 
additional memory overhead in the storage of B(k, t). This can become excessive 
when, in performing the QMC walk, the time step z must be very small to obtain 
low bias. However, because successive values of the function to be sampled, A(R), 
are highly correlated, A and P need not be sampled at every point along the walk. 
By sampling only every n steps, these memory requirements are reduced by a factor 
of n. 

Branching Algorithms with Weighting 
To reduce the statistical error in sampled values of &,/!Py,, we explore a variant 

of the usual branching generally used in QMC walks. Upon completing a move, 
R + R’, the most common implementation of branching is to obtain an integer, Ib, 
which specifies the number of walkers at R’. The number of descendants, Z,, is 
int[b(R, R’) + 51, where b(R, R’) is the weight of R’ relative to R, and r is is a 
uniform random variate between 0 and 1. In the diffusion QMC approach, b(R, R’) 
is the branching factor from G, [8,9]. While this rounding is correct on average, 
i.e., 1, = b, a “microscopically” exact procedure is to weight each walker by the 
product of its current weight and the branching factor b. The drawback to this 
purely weighting procedure is that, since the product of these weights tends to 
either 0 or co, efficiency is lost with computations on walkers that contribute very 
little information due to their low (absolute or relative) weights. 

A combination of branching and weighting, however, is useful. In this case we 
omit integer rounding until a weight becomes exceedingly small or large. When the 
weight w becomes large, an integer I,. is determined from it, as described above; 
however the daughters are assigned weights of Zw/w, rather than unity, so that no 
loss of information occurs. When the weight becomes smaller than a threshold 
value, integer rounding is applied. The benefit of this modification is that the 
variance of the asymptotic populations, P, now given as the sum of the weights of 
descendants, is noticeably reduced. This leads to improved precision in pure expec- 
tation values. See the Appendix for an analysis of the comparative variances. 

III. PURE EXPECTATION VALUES BY VMC WITH QMC “SIDE WALKS" 

In this section we explore an approach that begins with VMC, rather than QMC, 
sampling of points from the distribution 1 !PJ’. These walks are very efficient, can 
employ large time steps, and have no bias. The points obtained are then initial 
points for QMC “side walks,” performed to obtain P and thereby &JY,. Before 
implementing the QMC walk, the starting coordinates of the initial points are 
stored so that the VMC walk may be continued after values of &/Y’T are sampled. 
Since values of P are computed only for points at the beginning of each QMC walk, 
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the labelling process of the previous section is greatly simplified. For example, for 
A4 walkers drawn from 1 YTI 2, 0(i) = i and 6(i) = 0. Under these conditions the 
descendants of the ith walker are simply those at the end of the QMC walk with 
8 = i, cf. Fig. 2. 

Since initial points are selected from 1 !Py,I ‘, the factor (&,/Yv,12 is necessary to 
obtain pure expectation values. To obtain it, at least two independent samplings of 
&,/Y= must be performed [llb]. This is because the square of the asymptotic 
population P is not an unbiased estimate of l&,/Y~12 even though, on average, 
P is given by &,/Yy,. One way to show this is to write 

p(r) = M’YT + r](r), (18) 

where < corresponds to a specific QMC walk and ~(4) is the fluctuation in this 
walk. For convenience the time dependence is not displayed. Denoting the 
probability distribution of walks by h(r), there results 

(19) 

The term, 145) 45) 4 vanishes because the average ij = 0 (i.e., P = &,/YT). Note, 
however, that squaring the population yields 

j h(5) P2(tJ) 4 = l~o/Y,12+ j h(4) q’(t) dt, (20) 

VMC 
4 R3 -- ____-- ------ 

,T!fl x 

R5 .-- 
F 

0 

1 

2 

3 

4 

P(R,)=l P(R,) = 2 P(R,) = 1 P(R,)=O P(R,) = 1 

QMC 
GENERATION (t) 

FIG. 2. Tagging algorithm for VMC with QMC side walks method. The family trees generated are 
shown for five points sampled from IYrI*. Since only the descendants of the points beginning each 
QMC walk are tracked, the tagging algorithm is very simple, as indicated here and discussed in the text. 
Weights are carried with the branching walkers so that the asymptotic population of a point is the sum 
of weights of its descendants at a sufficiently large 1. For each initial point, TWO QMC walks are 
employed in order to obtain two statistically independent samplings of &,/Yr and, therefore, an 
unbiased estimate of Iq50/‘P’T12. As in the single QMC walk approach, results may readily be computed 
for several convergence times (t). 



MC ALGORITHMS FOR EXPECTATION VALUES 267 

in which the second term on the right-hand side of Eq. (20) does not vanish. On the 
other hand, the product of two asymptotic populations obtained independently is 
equal to I&JYy,12 on average; that is, from Eq. (19), 

1 M51) P(51) &l .j NC*) PC521 &2 = IGw~T12. (21) 

Thus, by sampling A and two values of P at points selected from 1 Y,I *, trial, 
mixed, and pure expectation values may be computed. These averages are, 
respectively, 

A, = ( YVTI CP(51) + P(r*)lA I Yu,>/( ‘y,I CfTtl) + P(52)l I yu,>, 
and 

A, = < YY,I P(5,) f’(t2L4 I Y=)l<Yz4 f’(51) PC521 IYT). (22) 

Although two walks and two samplings of P are required for A,, an increase in 
efficiency is possible, since A and P are sampled from a VMC walk which possesses 
no time-step bias and allows large time steps to be used [9], thereby sampling 
configuration space more efficiently. Another benefit is that in this approach (which 
we hereafter denote V + QMC) the statistical error in A, - A, is generally much 
smaller than that of A, alone, since A, and A, are correlated. This is useful because 
trial expectation values can be quickly computed in a separate VMC calculation to 
high precision. Therefore, adding A, - AT from V + QMC to a value of A, from 
VMC alone (referred to herafter as “correlated V + QMC”) can yield a significant 
reduction in the statistical error of A,. 

The degree of correlation observed between A, and A,, and thus the efficiency 
of correlated V + QMC, is reduced as the statistical error of the asymptotic popula- 
tions (and therefore of AP) increases. The population, P, after N steps is given by 
the (N-fold) product of the branching factors of G,. The statistical error of the 
branching factor, namely IJ~, arises from fluctuations of the local energy, and is 
related to the statistical error in the population, up, according to 

0,/P = JN o,/b. (23) 

Since t = Nr, the statistical error in P increases as fi. Therefore, the usefulness 
of correlated V + QMC depends on the time required to converge to &,/YT and the 
fluctuations in the local energy, as reflected in 0,/b. 

A final point of interest for the correlated approach concerns the most efficient 
amount of computation on (A, - AT) versus A,. The efficiency, Ef, for a computa- 
tion time of T and a resulting variance of V ( = o*), is given by E, = (VT)-‘. 
Therefore, when computing a pure expectation value as the sum of (A, - AT) and 
A,, one obtains 

E/=(T,-.+T,)-‘(~~-T+T/T)-l. (24) 
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For T,- T + T, = T, and since VP- T cc T;? T and V, cc T r’, the efficiency may 
be written as a function of only T,- T or T, allowing the values of these quantities 
which maximize E, to be obtained. The optimum computation times also yield 

T ~-TVT=TTV~-T (25) 

as a useful expression for when the efficiency is greatest. Unfortunately, performing 
computations which satisfy Eq. (25) requires a priori knowledge of the statistical 
errors. Nevertheless, initial estimates of the statistical errors in (A, - AT) and AT 
can serve as guidelines for the amount of computer time best spent on each 
quantity. 

IV. MOMENTS WITH ODD POWERS 

In this section we explore more efficient approaches for computing expectation 
values of odd powered coordinate operators. For such expectation values, contribu- 
tions from different regions of space may partially or entirely cancel. Therefore, 
sampling techniques which exploit this cancellation are preferred. 

The one-dimensional computation of (x) = J xp(x) dx, serves as an example. As 
the symmetry of p(x) about x= 0 increases (for simplicity, considering only 
symmetry about the origin), the degree of cancellation of the integrand also 
increases. Therefore, lower variance estimates may be obtained by sampling a new 
distribution, p’ (e.g., by sampling p’/p from the original distribution p) which 
exploits this cancellation. The function p’ need not be a probability density; it is 
only required that j xp’(x) dx = (x). 

Probably the most straightforward approach is to choose p’ as the antisymmetric 
component of p, namely p’(x) = pA(x) = i [p(x) - p( -x)1. Since for an odd func- 
tion such as x, the symmetric component of p vanishes upon integration, one has 

W=jxpAWx. (26) 

In sampling from p, (x) may now be computed by averaging xp,(x)/p(x). Note 
that if p is an even function, all sampled values vanish identically so that the correct 
result is obtained with no statistical error. More generally, of course, p is not fully 
symmetric, and only a finite statistical error reduction ensues. For example, con- 
sider a one-dimensional distribution that, like a heteronuclear molecule, possesses 
unequal exponentially decaying tails at large f x. The antisymmetric part of pa 
then also possesses such tails, though of differing sign. Thus little error reduction 
is expected in this case. In addition, sampled values of xp,(x)/p(x) will be 
unbounded in regions where p(x) is small but p( -x) is not, thus increasing 
statistical error. Therefore, depending on p(x), the reduction in statistical error may 
or may not be significant. 
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The problems with the naive choice of p’= pa (that the spread in p’ is not 
optimally reduced and that p’/p may be poorly behaved) are addressed by a new 
choice of p’, given by 

B(x)= o 

i 

P(X) - P( -x) if p(x)>p(-x) 
if p(x) < p( -x). (27) 

It is easily shown that (x) = J xp(x) dx. However, the spread in j? should be less 
than that of p or pa. If tails are present in the original distribution, one of them 
is immediately eliminated. Also, p possesses the zero-variance property (that pA 
also does) when p is an even function. Finally, by construction the quantity to be 
averaged in sampling from p, namely xb/p, will remain bounded for small p, since 
o<p/p< 1. 

To take a simple example, consider p(x) = i( 1 + x), 1x1 < 1. From the definitions 
above, pA(x) =x/2 on [xl< 1 and p(x) = x on 06 xd 1. The variance obtained 
from fi is 

v, s s ’ p(x)[xfi(x)/p(~)]~dx - (~)~xO.ll. (28) -1 
Eficiency is thus doubled over sampling from p directly, for which VP z 0.22. In 
contrast, VP, is infinite because of the singularity in pa/p at x = - 1. 

A more realistic example is offered in Fig. 3, where p is the square of a trial func- 
tion for LiH at a fixed distance from the internuclear axis (x). Comparing the solid 
line, p, to the dotted, 6, shows the narrowing of the distribution achieved, even 

FIG. 3. Equivalent distributions for the computation of (x) for LiH. The x coordinate is the inter- 
nuclear axis. The solid line represents the original distribution, p, while the dotted one represents the 
difference distribution 6, cf. Eq. (27). The average value of x is identical over both distributions, but 
the variances are not. 
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though p is far from being an even fuction. A numerical computation for the 
variance yields V,(x) z 4 V,(x). Applying these ideas is most readily accomplished 
within the V + QMC approach. Specifically, values of &/!Py, are required for each 
point R sampled from 1 !P,12 and at symmetry points related to R by reflection or 
inversion. If the symmetry is sufficiently great, the extra computation resulting from 
sampling at additional points will be compensated by reductions in the statistical 
error in the averages. The most pronounced reductions will be found for charge dis- 
tributions which are nearly symmetric. For example, for a molecule such as CO, a 
substantial reduction in statistical error versus a straightforward sampling of l&l2 
should be observable employing the technique described here. 

V. RESULTS AND DISCUSSION 

For purposes of evaluating the different approaches, we have computed a number 
of simple moments of the charge distribution of H and H,. The H atom trial func- 
tion is chosen as a 1s Slater orbital with an exponent detuned to 0.95. For H, the 
trial function is constructed as follows (cf. Table I). A 1s Slater orbital is centered 
on each atom and at the midpoint of the internuclear axis. The linear coefficients 
are obtained from an SCF calculation using the HONDO program [18]. In 
addition, a simple Jastrow function of electronelectron and electron-nuclear coor- 
dinates is also used, namely, 

J(r 12 y ria) = w (29) 

In Eq. (29), Roman indices denote electrons, while Greek indices denote nuclei and 
the bond function. The final form of the trial function is 

Y”,(L 2) =$(I) WI J(L 2L 

where $ is a molecular orbital. 

(30) 

As we indicated in the Introduction, there are a variety of GFMC implementa- 
tions for which our algorithms described here apply. For the computations we 

TABLE I 

Parameters of the H, Trial Wave Function 

c(H) 0.48610 0.50 
c(BF”) 0.11089 it 0.50 
Exponent 1.19000 I 0.15 

” 1.00 

‘The bond function is located at the midpoint of the inter- 
nuclear axis. 
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report below we have chosen the diffusion QMC approach described in detail in 
Ref. [9]. The only difference from that description is that the trial energy in the 
present algorithm is not updated, but rather it is kept fixed at the initial value. 

Trial, mixed, and pure expectation values obtained for H and H, are presented 
in Table II. Where analytic values of A, or A, are not known, VMC and QMC 
results have been computed, respectively. The values in Table II are thus indicative 
of the accuracy of the various starting points for our pure approaches. As can be 
seen, the second-order estimator, while far more accurate than trial or mixed 
averages, is still noticably biased. 

Pure expectation values of (r), (z*), and (r2) for H and of (2’) and (r*) for 
H,, computed by the methods discussed in Sections II and III, are presented in 
Tables III and IV. Since the efficiency of the techniques is our primary concern, 
detailed studies of time step bias and the effects of finite converge time, t, are not 
undertaken here. Despite this, accuracies are generally better than 0.5%. However, 
it is precisely these biases that account for the small difference between the pure 
QMC and exact results. In Table III we address these biases by extrapolation of 
both the convergence time and the time step size for one of the four approaches 
(correlated V + QMC). The final extrapolated results show no visible bias. In addi- 
tion, error bars are smaller than the bias of the second-order estimators given in 
Table II, making that bias visible. This is important, for otherwise the pure 
estimator would have no real advantage over the second-order one. The ability to 

TABLE II 

Comparison of Trial, Mixed, and Pure Expectation Values 
for H and H,O 

H 

(r) 0’) <r’> 

Trial 1.5789 1.1080 3.3241 
Mixed 1.5385 1.0519 3.1558 
Second-orderb 1.4981 0.9958 2.9875 
Pure 1.5000 1.0000 3.0000 

HZ 

Trial (VMC) 
Mixed (QMC)’ 
Second-orderb 
Pure (exact)d 

w> (r*> 
1.0787(6) 2.6228( 11) 
1.0491(8) 2.5809( 14) 
1.0195(10) 2.5390(18) 
1.0230 2.5464 

D Results for H are the exact, analytic values. 
b See Eq. (5). 
‘Time step for QMC results is O.Olh-‘. 
dRef. [19]. 

581/96/Z-3 
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reduce these error bars sufficiently comes in part from the use of good quality trial 
wavefunctions and, as discussed more below, by correlated sampling and the partial 
carrying of weights. Thus pure expectation values need no longer be abandoned in 
favor of the less noisy but biased second-order estimators. 

In the single-walk calculations of H (cf. Table III) even the worst (t, z) combina- 
tion yields second moments accurate to 1% or better. These small errors at 
convergence time t = 9-l (relative to the 5 % error in the mixed averages, i.e., 
t = 0) imply that values of P are close to their asymptotic limit, #/YT. Doubling the 
convergence time to 10h-l further increases the accuracy of the second moments to 
within < 0.5%. Though this improvement indicates that further convergence is 
possible, the smallness of the gain (relative to the total change from the mixed 
average) verifies that values of P are indeed well converged. However, in the 
V + QMC approaches at t = 5h -‘, the errors are noticeably larger than those 
resulting from the single QMC walk algorithm. This is most likely due to the 

TABLE III 

Pure Expectation Values for H by Various Monte Carlo Methods” 

Method (6 zJb (r) <z2> (r*> 

Single QMC walk: 
branching without weights 

Single QMC walk: 
branching with weights 

V+QMC 

Correlated 
V + QMC’ 

Exactd 

(5,0.050) 
(10,0.050) 
(10,0.025) 

1.5058(14) 
1.5038(15) 
1.5025(21) 

(5,0.050) 1.5052(11) 
(10, 0.050) 1.5040( 12) 
(10, 0.025) 1.5023(15) 

(5,0.050) 
(10,0.050) 
(10, 0.025) 

1.5074( 15) 
1.5032(22) 
1.5026(23) 

(5,0.050) 
(10,0.050) 
(00,0.050) 
(10,0.025) 
(co, 0.025) 
(ah 0) 

1.5094(5) 
1.5024(7) 
1.5017(7) 
1.5020(9) 
1.5013(9) 
1.5009(9) 

1.5000 

1.0075(32) 
1.0066(31) 
1.0029(41) 

1.0084(25) 
1.0024(25) 
1.0040(33) 

1.0150(40) 
1.0018(51) 
1.0008(53) 

1.0144(11) 
1.0029(21) 
1.0015(21) 
1.0025(24) 
1.0014(24) 
1.0013(24) 

1.0000 

3.025(6) 
3.015(7) 
3.010(9) 

3.024( 5) 
3.018(6) 
3.009(7) 

3.033(6) 
3.012(9) 
3.012(11) 

3.045(2) 
3.010(4) 
3.006(4) 
3.009(S) 
3.005( 5) 
3.004(5) 

3.000 

a Units of length and time are Bohr and hm’, respectively. Statistical errors, in paretheses, represent 
one standard deviation in the mean of a Gaussian distribution and are normalized to correspond to 
10 min of computation time on a Cray X-MP. 

b f denotes propagation time from Y,; 5 is the time step. 
’ For extrapolation to t + co five values of I( = 2, 4, 6, 8, 10) were tit to an exponential a + be-“’ 

representing the effect of the decay of the higher energy eigenstates. Time step extrapolation is simply 
linear. Error bars on extrapolated values reflect those of the last point in the sequence. Combining all 
errors can lead to uncertainties slightly dilferent from those quoted. 

d See Table II. 
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requirement of sampling (&,/Yy,) twice, compounding the error of incompletely 
converged values of P. This effect appears to be no longer significant by t = 10h - ‘, 
where the accuracies of all methods are statistically equivalent. Moreover, as shown 
in the table, one may also extrapolate to t --f cc with a few more data points. Time 
step bias must be independently considered. That little time step bias is present may 
be seen when reducing r from 0.050 to 0.025h ~ ‘: only a small improvement is 
obtained (generally less than the statistical error) in the already accurate pure 
expectation values. 

All H, calculations were performed with r = O.Olh- ‘. This time step introduces 
very little error as demonstrated by the accuracy of the results of Table IV. Since 
the statistical errors are often larger than the differences between means corre- 
sponding to different convergence times, trends are difficult to discern. Generally, it 
is found that errors in the means are < 1% at t = 2h-’ and less than statistical 
error ( < 0.5 “A) at t = 4 and 6h- ‘. 

The results of Tables III and IV show that each algorithm readily produces 
accurate expectation values. For a comparison of the efficiency of the various algo- 
rithms, all statistical errors in Tables III and IV correspond to the same amount of 
computation (10 minutes on a single processor of a Cray X-MP) and therefore 
provide a direct measure of relative efficiency. 

It is immediately apparent that small and consistent improvement in precision 
results for both H and H, when weights are carried in the branching QMC walk. 

TABLE IV 

Pure Expectation Values for H,” 

Method 

Single QMC walk: 
branching without weights 

Single QMC walk: 
branching with weights 

V+QMC 

Correlated 
V+QMC 

Exactb 

t <z*> <r*> 

2 1.028(9) 2.554( 14) 
4 1.024(8) 2.549( 14) 
6 1.021(9) 2.549( 15) 

2 1.034(6) 2.554( 10) 
4 1.020(5) 2.535(9) 
6 1.028(6) 2.545( 12) 

2 1.034(5) 2.563(9) 
4 1.022(8) 2.548(12) 
6 1.027(8) 2.550(21) 

2 1.033(2) 2.562(4) 
4 1.026(3) 2.549(6) 
6 1.026(6) 2.550( 10) 

1.023 2.546 

a Units are given in Table III. The time step is r = O.Olh-’ for all results 
presented; the statistical errors correspond to 10 min of computation on a 
Cray X-MP. 

b Ref. [19]. Also see Table II. 
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The average increase in efficiency (the squared ratios of statistical errors averaged 
across r and t) is roughly 60% for H and 130% for H,. This improvement does 
not appear to be strongly dependent on the choices for the upper and lower bounds 
of the weights. In the single-walk calculations these weights were not allowed to 
exceed 2. The lower bound was chosen as either 0.1 or 0.4, and no noticeable 
change in the efficiency was found depending on this choice. 

Comparisons of efficiency between the V+ QMC and correlated V+ QMC 
approaches are also given by Tables III and IV. For H, the average increase in 
efficiency with correlated V + QMC over V + QMC is a factor of 10 at t = 9-l and 
a factor of 6 at t = lo&‘. For H,, the increase in efficiency is a factor of 6 at 
t = 2h -~ I, but decreases to 3 at t = 6h - ‘. As expected, reductions in statistical error 
obtained by exploiting the correlation between trial and pure expectation values 
decrease with increasing convergence time. Nonetheless, gains in efficiency remain 
substantial even at the larger convergence times. 

While the most efficient techniques within the single- and double-walk algorithms 
are discernible, the question of which class is better is not so immediately 
answerable. For H, the smallest statistical errors are obtained by the correlated 
V + QMC approach. For H,, however, the superiority of the correlated V + QMC 
technique is lost by t = 6h- ‘. Since convergence to accurate results is obtained for 
H, by t = 4/z-‘, the correlated V + QMC technique remains the best approach for 
H, as well as H. However, as seen above, the efficiency of the correlated V + QMC 
method versus other QMC approaches is strongly dependent on the length of the 
QMC walk required for convergence of the populations to do/Y, and on how 
quickly the statistical error in (AP -AT) increases with t. Hydrogenic systems in 
general have optimal convergence properties and allow for the longest chains of 
correlated sampling. Larger Z atoms and systems with more complex wavefunc- 
tions may likely take too long to converge to be competitive. Therefore, the single- 
walk method (with weighting) may ultimately be the more competitive for these 
other systems. This should, however, be investigated further in future studies. 

APPENDIX: VARIANCE OF ROUNDED VERSUS UNROUNDED WEIGHTS 

Here we compare the variance obtained for the weight when it is integer rounded 
(keeping the correct expectation value) versus when its full real value is kept. The 
difference is significant Iwhen it is necessary to sample asymptotic populations. 

Consider a weight w and its associated probability density function, f(w). The 
mean and variance of w are given by 

w= wf(w) dw s 
and 

v,= w2f(w)dw-$2. s (Al 1 
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Let Z,(r) s int(w + 5) be the integer-rounded weight. Here 5 is a uniform random 
variate between 0 and 1. The mean value of I,,,(<) over the uniform distribution of 
r’s is given as 

042) 

In contrast to Eq. (Al), the variance of the rounded weight is 

Defining the remainder r(w) by w = int(w) + r(w), one obtains for the integral 
over 5, 

~~I~(O&=Jb~- [int(w+5)]2dT+J11p [int(w+O]2d<, 
r 

= (1 - r)[int(w)]‘+ r[int(w) + l]* 

=w2+r-r2. 

Eq. (A3) now becomes 

VTw= [w’+r(w)-r’(w)]f(w)dw-ti2 
s 

or 

Vrw = V, + j [r(w) -r*(w)] f(w) dw. 

(A4) 

(A51 

(A61 

Since r(w) - r(w)* 2 0, and f(w) is by definition positive definite, Viw > V,. This 
quantifies the lower variance in the weights when integer rounding is avoided. 
Though the additional variance due to a single integer-rounded weight is small, the 
reduction in the variance of the asymptotic populations (which are essentially the 
products of many weights) can be significant. 

A somewhat different but related argument for carrying the weights for a time is 
given in Ref. [17]. We thank one of the referees for bringing this paper to our 
attention. The very nice analysis given there of the population dynamics of inde- 
pendent “families” of random walkers will likely be useful for determining the 
optimal time the weights should be accumulated before branching is done. 
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